Learning with privileged information for multi-Label classification
نویسندگان
چکیده
منابع مشابه
Learning with Privileged Information for Multi-Label Classification
In this paper, we propose a novel approach for learning multi-label classifiers with the help of privileged information. Specifically, we use similarity constraints to capture the relationship between available information and privileged information, and use ranking constraints to capture the dependencies among multiple labels. By integrating similarity constraints and ranking constraints into ...
متن کاملPrivileged Multi-label Learning
This paper presents privileged multi-label learning (PrML) to explore and exploit the relationship between labels in multi-label learning problems. We suggest that for each individual label, it cannot only be implicitly connected with other labels via the low-rank constraint over label predictors, but also its performance on examples can receive the explicit comments from other labels together ...
متن کاملLearning with Privileged Information for Improved Target Classification
This work considers “Learning Using Privileged Information” (LUPI) paradigm. LUPI improves classification accuracy by incorporating additional information available at training time and not available during testing. In this contribution, the LUPI paradigm is tested on a Wide Area Motion Imagery (WAMI) dataset and on images from the Caltech 101 dataset. In both cases a consistent improvement in ...
متن کاملActive Learning with Multi-Label SVM Classification
Multi-label classification, where each instance is assigned to multiple categories, is a prevalent problem in data analysis. However, annotations of multi-label instances are typically more timeconsuming or expensive to obtain than annotations of single-label instances. Though active learning has been widely studied on reducing labeling effort for single-label problems, current research on mult...
متن کاملLearning classification models with soft-label information
OBJECTIVE Learning of classification models in medicine often relies on data labeled by a human expert. Since labeling of clinical data may be time-consuming, finding ways of alleviating the labeling costs is critical for our ability to automatically learn such models. In this paper we propose a new machine learning approach that is able to learn improved binary classification models more effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2018
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2018.03.033